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ABSTRACT 

Ground-based,  equal-arm-length  laser  interferometers  are  being  built to 

measure high-frequency  astrophysical gravitational waves. Because of the 

arm-length  equality, laser  light  experiences the  same delay in  each arm  and 

thus  phase or frequency noise from the laser itself precisely cancels at  the 

photodetector.  This laser noise cancellation is crucial. Raw laser  noise  is orders 

of magnitude  larger  than  other noises and  the desired  sensitivity to  gravitational 

waves cannot  be  achieved  without  very  precise  cancellation. 

Laser  interferometers  in  space, e.g. the proposed  three-spacecraft LISA 

detector, will have  much  longer arm  lengths  and will be  sensitive to  much 

lower frequency gravitational  radiation.  In  contrast  with  ground-based 

interferometers,  it is impossible to  maintain  equal distances  between  spacecraft 

pairs;  thus laser noise cannot  be  cancelled by direct  differencing of the beams. 

We analyze  here an unequal-arm  three-spacecraft  gravitational wave detector 

in which  each  spacecraft  has  one  free-running  laser used both as a  transmitter 

(to send to  the  other two spacecraft)  and as a local  oscillator (to  monitor  the 

frequencies of beams received from the  other two  spacecraft).  This  produces  six 

data  streams, two received time series generated at each of the  three  spacecraft. 

We describe the  apparatus  in  terms of Doppler  transfer  functions of signals 

and noises  on these one-way transits between  pairs of test masses.  Accounting 

for  time-delays of the laser  light  and  gravitational waves propagating  through 

the  apparatus, we discuss several  simple  and  potentially useful combinations 

of the six data  streams, each of which exactly  cancels the noise  from all three 

lasers  while  retaining the  gravitational wave signal. Three of these  combinations 

are equivalent to unequal-arm  interferometers,  previously  analyzed by Tinto 

& Armstrong 1999. The  other combinations are new and  may  provide  design 
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and  operational advantages for space-based  detectors.  Since at most  three 

laser-noise-free data  streams can  be independent, we provide equations  relating 

the combinations  reported  here. We give the response  functions of these 

laser-noise-canceling data combinations for both  a gravity wave signal  and for 

the  remaining non-cancelled noise sources.  Finally, using spacecraft  separations 

and  noise spectra  appropriate for the LISA mission, we calculate  the  expected 

gravitational wave sensitivities for each  laser-noise-canceling data  combination. 

Subject headings: 
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1. INTRODUCTION 

The direct  measurement of gravitational  radiation will yield otherwise  unobtainable 

information  about  massive  astrophysical  sources.  High-sensitivity  detection  methods 

include  resonant  bars,  Doppler  tracking of spacecraft,  and  broadband  laser  interferometers 

(Thorne 1987).  Ground-based  interferometric  gravitational wave (GW) detectors (e.g. 

Abramovici e t  al. 1992, Caron et al. 1997, Kawabe et  al. 1997,  Luck et al. 1997) will search 

for high-frequency (-10 - 1000 Hz) gravitational waves. Space-borne interferometers, 

such  as LISA (Bender et al. 1998),  have  been  proposed to  detect  and  study  lowfrequency 

(-0.1 - 100 mHz) waves. 

Earth-based  interferometers  operate  in the long-wavelength limit, or LWL (arm  lengths 

<< gravitational wavelength -c / fo ,  where f o  is  a  characteristic  frequency of the  GW). 

By contrast,  the Doppler  tracking  technique  and  space-borne  interferometers  involve  much 

longer arm-lengths  and, over much of the low-frequency band  where they  are  sensitive,  are 

not in the LWL. When  the physical  scale of a  free  mass  optical  interferometer  intended 

to  detect  gravitational waves is comparable to or larger  than  the GW wavelength, time 

delays  in the response of the  instrument  to  the waves, and  travel  times along beams  in 

the  instrument,  must  be allowed for in the theory of the detector  response  used for data 

interpretation.  It  is convenient to  formulate  the  instrumental responses in  terms of observed 

differential  frequency  shifts - for short, Doppler  shifts - rather than in  terms of phase 

shifts  usually  used  in  interferometry,  although of course  these data, as functions of time,  are 

interconvertible. 

Time-of-flight  delays also are  important  in space  interferometry  when,  inevitably,  path 

lengths  cannot  be  made  equal.  In  this  case in  situ homodyne detection - direct  interference 

of beams - will not  cancel  laser  frequency noise to  the threshold of secondary  fluctuations. 

In  order to achieve  laser noise cancellation, the time-varying  Doppler data must  be  recorded 



and post-processed to allow  for arm-length  differences. The  data  streams will have temporal 

structure, which can be described as due  to many-pulse  responses to  &function  excitations, 

depending  on  time-of-flight  delays  in the response  functions of the  instrumental Doppler 

noises and  in  the response to incident  plane-parallel  gravitational waves. Previous  papers 

in this  spirit have  dealt  with the Doppler  response to gravitational waves of a  coherent 

microwave  link  between the  Earth  and a distant spacecraft (three-pulse GW response) 

(Estabrook & Wahlquist  1975), with  the response of an  equi-arm  Michelson  interferometer 

(four-pulse GW response)  (Estabrook  1985),  and  with  unequal arm interferometers 

(eight-pulse GW response) (Tinto & Armstrong 1999). 

The LISA gravitational wave observatory will use three  spacecraft  orbiting  the  sun. 

Each  spacecraft would be  equipped  with  a  laser  sending  beams to  the  other two (-0.03 AU 

away)  while  simultaneously  detecting  (using  the  same  laser) the frequencies of the laser 

beams  received  from the  other two. We assume  in the following successful prior removal 

of any  first-order  Doppler  beat  notes  due  to  relative  motions,  giving  six  residual  Doppler 

time series  as the raw data of a stationary time delay  space  interferometer. We suggest 

that  it is best  to  think of LISA not  as constituting  one or more  conventional  Michelson 

interferometers,  but  rather, in  a symmetrical way, to consider a closed array of six one-arm 

delay  lines  between the  test masses.  In this way  we can  produce new data combinations 

which cancel  laser  noises,  and  compute  achievable  sensitivities of these  combinations  in 

terms of the  separate  and  relatively simple GW and  instrumental noise one-arm responses 

(cf. Tinto 1996, Tinto 1998). 

In  Section 2 we summarize the one-arm  Doppler  transfer functions of an  optical  beam 

between  two  spacecraft due  to various  excitations:  incident  transverse  traceless  gravitational 

waves, frequency  fluctuations of the lasers used in  transmission and  reception,  fluctuations 

due  to  non-inertial  motions of the spacecraft,  and  shot noise introduced at the  readout. 



- 6 -  

The  dominant noise, by many  orders of magnitude, is frequency fluctuations in the lasers. 

These noises must  be  very precisely removed from the  data  to achieve GW sensitivity at 

levels set by the much lower remaining  Doppler noise sources. 

In  Section 3 we show  how all three laser noises can  be  eliminated by suitably delaying 

and  linearly combining the six LISA data  streams. A three  parameter manifold of 

high-precision data  streams  suitable for gravitational wave analysis  results.  A symmetrical 

basis that elegantly  spans  the  space of laser-noise-free data is found,  combinations of 

the six data  streams  that we denote a, p, and 7. Each of these  combines the raw data 

with copies of it delayed by one or two single-arm transit times. a, p, and y each has  a 

six-pulse  response to incident gravitational waves; that is,  a  passing delta  function of metric 

distortion will be seen  six times  in each of these  streams. 

A six-pulse  laser-noise-free  combination  denoted C, for which each raw data set  need 

only be delayed by single arm  transit  times, is also introduced,  and  its  relation to a, p, 
and y given. The response of C to gravitational waves becomes of higher order, however,  in 

the special  case  where the spacecraft  separations  are  equal;  this  may  be an  argument for 

preferring an isosceles or scalene triangular configuration of spacecraft. 

We then express the recently-discovered  laser-noise-free  combinations  for  each of the 

three possible  unequal-arm  interferometers  in the LISA array  (Tinto & Armstrong 1999) 

in  terms of a, p, and 7 with  further  transit  time delays. We call these X, Y ,  and 2; 

they have  eight-pulse  responses to  gravitational  radiation. One of these  interferometric 

data combinations would still  be  available if the links  between  one  pair of spacecraft were 

lost. We  show  how the unequal-arm  interferometer data combinations X,  Y, and Z can 

be  constructed by combining one-way data  streams;  the present LISA design  equivalently 

produces them using  optical  transponders. 

Other  eight-pulse  combinations,  denoted P, Q and R, each of which requires data taken 
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at only  two of the spacecraft,  are also presented. 

In Section 4 we compute  the response to sinusoidal  gravitational  radiation of each of 

the laser-noise-canceling  linear  combinations (a ,  p, 7 ,  5, X, Y, 2, P, Q, R) as  a  function 

of frequency, suitably averaging over source  directions  and wave polarization  states. We 

also compute  the  aggregate noise spectrum for each of these data  combinations,  taking 

into  account  appropriate  transfer  functions.  The  ratio of the  rms noise to  the rms signal 

response then gives the sensitivity of each data combination to  gravitational waves as  a 

function of Fourier  frequency. The  spectral region where  these ratios  are  minimum  sets 

the observational  passband and  threshold  sensitivity for a  space-based gravitational wave 

search.  These  plots  for X,  Y, 2 can  directly  be  compared to previous  feasibility  calculations 

for LISA, which  assumed  an  equal-arm Michelson interferometer  configuration. 

2. DOPPLER  RESPONSE  FUNCTIONS 

2.1. Notation 

Figure 1 shows the geometry  in the plane of the three-spacecraft LISA detector.  The 

spacecraft  are labeled 1, 2, 3 and  are  equidistant  (distance = Z) from  point 0. Relative  to 

0, the spacecraft  are  located by the coplanar unit vectors $1, $ 2 ,  $3. As indicated  in  Figure 

1, the  lengths between  pairs of spacecraft are L1, L2, L3, with L; being opposite  spacecraft 

i. Unit  vectors  along the lines  connecting  spacecraft  pairs are 61, 62, 6 3 ,  oriented  such  that 

hl has  its foot at spacecraft 3 and  its arrow  pointing at spacecraft 2, 62 has  its foot at 

spacecraft 1 and its arrow  pointing  toward  spacecraft 3, and 63 has  its foot at spacecraft 2 

and  its arrow  pointing  toward  spacecraft 1. Thus LIT&+ L& + L3& = 0. This  terminology 

allows us to cyclically permute indices in  subsequent  equations,  and so in  fact  only 1/3 as 

many  equations  need  be  written  explicitly. 
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Each  spacecraft  has  a  laser which is used both  to  transmit  a  narrow-band beam to 

the  other two  spacecraft  and  (as  a  local  oscillator) to produce  a  Doppler time series from 

the beams  received  from the  other two  spacecraft.  Thus  there  are  six  Doppler  time  series 

produced,  involving  reception of two  beams at each of three  spacecraft. We denote  these 

six  Doppler data  streams, each  divided by the nominal  center  frequency of the lasers, vo, as 

y;j, with i not  equal to j. The  subscript convention is that, e.g., y31 is the (fractional or 

normalized - we omit  the qualifier  in the rest of this  paper) Doppler  series  derived  from 

reception at spacecraft 1 with  transmission  from  spacecraft 2. Similarly, yZ1 is the Doppler 

derived  from  reception at spacecraft 1 with  transmission at spacecraft 3. The  other  four 

Doppler time series are  obtained by cyclic permutation of the indices,  above: 1 + 2 3 + 

1. We will also use a useful notation for the  data  streams  further delayed in post-processing: 

y31,2 = ~ 3 1 ( t  - L Z ) ,  y31,23 = ~ 3 1 ( t  - L2 - L3) = y31,32, etc. (we have here  taken c = 1). 

2.2. Signal and Noise  Response  Functions 

Any gravitational wave signal and  the various noises enter  the Doppler  observations y;j 

via  transfer  functions.  In  this  subsection we summarize  the response functions for  a  general 

signal and  the  principal noise processes. 

Signal Transfer Function 

The response of the one-way Doppler time series y;j excited by a transverse, traceless 

plane  gravitational wave having unit wavevector 1 is,  in  the above notation,  (Wahlquist 

1987): 
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and where h(t) is the first  order spatial  metric  perturbation  at  point 0. Note that 

L1k - lil = l (p2  - p g ) ,  and so forth by cyclic permutation of the indices. The  gravitational 

wave h( t )  is [h+(t)  e+ + h,(t) e , ] ,  where the 3-tensors e+ and e ,  are  transverse  to IC and 

traceless. With  respect  to  an  orthonormal  propagation  frame (i,;, k) their  components  are: 

A 

e+ = 

Noise  Transfer  Functions 

1 0 0  

0 -1 0 

0 0 0  

1 ex = 
0 1 0  

1 0 0  

0 0 0  

Fluctuations  in  the laser  frequency at each of the spacecraft are  the  main noise  source 

and  must  be  cancelled by 7 to 10 orders of magnitude  to reach LISA’S desired  sensitivity. 

We denote frequency  fluctuation  noise of the laser  aboard  the  i-th  spacecraft  divided by the 

nominal  frequency uo by C;(t).  That  is,  the  instantaneous frequency is vi(t) = vo(l+ C;(t)) .  

The  laser noise of the receiving spacecraft  enters the Doppler data  immediately at the 

time of reception,  while  the laser noise of the transmitting spacecraft  enters at a one-way 

delay time  earlier.  The responses  in the six  Doppler time series to laser  noise are  thus: 
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with  the laser noise contributions to  the  other four  Doppler time series obtained by cyclic 

permutation of the indices. 

Shot  noise, nfj(t), enters  each  Doppler  time  series  in the reception  process at spacecraft 

j. It is white  phase noise so its effect on the derivative of phase, the Doppler time series, 

has  a power spectral  density  proportional to f 2  where f is the Fourier  frequency. Its effect 

is immediate  at  the  time of reception, so that  the responses of the Doppler  observables are: 

Imperfections  in the ability of each  spacecraft strictly  to  maintain free-fall are called, in 

the LISA context,  inertial sensor  or  acceleration noise (Bender e t  al. 1998); this noise enters 

most  strongly at low frequencies. The integral of these  stochastic  accelerations gives velocity 

noises which affect the Doppler.  From  Figure 1, if spurious,  isotropic  accelerations at  the 

three  spacecraft  produce  random velocity  errors .'i(t), i = 1, 2, 3, then  the response in  the 

Doppler  observables will depend on the senses of the laser  beams and involve propagation 

delays: 
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(c = 1) with the  other four  Doppler time series obtained, as usual, by cyclic permutation of 

the indices. 

In the following we model the six time series  as  linear  sums of the above  signal and 

noises: 

Y i j ( t )  = y f p )  + yf;""'(t) + y$""t) + yY'(t) 

For the sensitivity  calculations of Section 4, we use detector dimensions and noise spectral 

levels appropriate for LISA. 

3. LINEAR DATA COMBINATIONS  WHICH ELIMINATE ALL LASER 

NOISES 

With  independent lasers  on two spacecraft  laser-noise  cancellation  can be achieved at 

selected  Fourier  frequencies (Tinto 1998);  with three spacecraft the increased number of 

Doppler  signals allows closure and removal of laser noises at all frequencies. Indeed, given 

the six experimental  data  streams y;j ( t ) ,  one can solve the linear  first  difference equations 

(11) to find  combinations which eliminate one or more of the noises. Since  for LISA 

frequency  fluctuations  in the  three lasers, yf,ase', dominate, we seek to cancel these noises. 
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In this section we present  what appears  to be the  ten simplest  linear  combinations which 

cancel the laser noises from  all of the spacecraft.  Since  only three such  combinations  can 

be  independent, we accordingly  note seven relations  between them. We assume  throughout 

a stationary configuration  with sufficient knowledge of arm  lengths  and  adequate clock 

synchronization  between  the  three  spacecraft  (Tinto & Armstrong 1999). 

3.1. The a, p ,  7 (Six-Pulse) Combinations 

As can be verified by direct substitution of the laser noise contributions  (equations 5, 

S), three  independent  linear combinations of the Doppler data which do  not  contain any 

laser noise are: 

These  linear  combinations  seem to us to  be  the simplest  suitable  basis for laser-noise-free 

data. Each  has a six-pulse  response to gravitational wave signals. This can be  demonstrated 

by substituting  the  gravitational wave responses for the y;j (equations 1, 2) into  the CY, p, y 

expressions,  above.  Explicitly, for a, the  gravitational wave response is: 



- 1 3  - 

- P 2 )  ( @ 3 ( t  - p 2 1 -  L3) - @ 3 ( t  - P J ) )  1 

with !Pi7  1 ,  p i ,  L; given in  terms of the  tensor  gravitational wave properties  and  the  detector 

geometry as given in  Section 2. A &-function GW, h(t) = H b ( t ) ,  would produce six 

pulses in cy, located  with  relative  times  depending  on  the  arrival  direction of the wave and 

the  detector  configuration: 1-111, p31 + L2, p21 + L3, p21 + L1 + L2, 1.131 + L1 + L3, and 

/ i l l +  L 1 +  L2 + L3. 

3.2. Fully Symmetric  (Sagnac) Combination 

A symmetric  combination which also exactly cancels all laser noises is c, given by: 
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i llas the  property  that each of the ;y;j data  streams  enters  exactly  once  and each is lagged 

by exactly one of the one-way light times.  Its response to  gravitational waves is: 

A &function GW signal would produce  six pulses in (, located at: p l l  + L3 + L2, 

p 2 l +  L1 + L3, p 3 l +  L1 + L2, p31+ L3, p21+ LZ, and P l l +  Ll.  

3.3. Unequal-Arm-Length Interferometric Combinations 

Of course CY, p, and y are  not  unique; they  span a three-space of combinations which 

produce data free of laser noise. For example,  there  are  combinations which cancel  all  laser 

noises while giving eight-pulse responses to gravitational waves: 

and Y, Z given by cyclic permutation of the indices.  These  can be expressed  directly  in 

terms CY, p ,  and y as: 



.Y,l = Q J Z  - P , z  - Y,3 + c (20)  

Note that X does not involve ~ 1 3  and y12, so it would still  be available if the  laser 

links  between  spacecraft 2 and 3 were lost. A similar  argument applies for Y and Z. If 

transponders were used  in  spacecraft 2 and 3 to slave the frequencies generated  there  to 

the uplink  frequency received from  spacecraft 1, they impose the  conditions ~ 3 2  = ~ 2 3  = 0 

(perhaps  then also adding  transponder noises which we do  not  consider here).  Then X 

becomes a combination of data  taken only at spacecraft 1: 

This is the laser-noise-free  unequal-arm  interferometer time series  first  given in  Tinto & 

Armstrong 1999, with  its eight-pulse  response to a gravitational wave signal. Evidently X 

in  equation (19) is a synthesized interferometer  response using one-way  Doppler data from 

all  three  spacecraft. 

Explicitly, for X, the  gravitational wave response is: 
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+ 1 - "(113 - 1 1 1 )  

- 1 + - ( p 1  - P 2 )  

[ L12 1 
[ LI3 1 

with Q i ,  1 ,  p i ,  L; given in terms of 

2. A 6-function GW signal would 

" 16 - 

( @ 2 ( ~  - pl l  - 2Lz - 2L3)  - s2(t - p31 - Lz - 2 L ) )  

( @ 3 ( t  - 1 1 2 1 -  L3 - 2L2) - \k:& - p J  - 2L2))  

(s2(t - p31 - L z  - 2L3)  - s,(t - 1111-  2 L 3 ) )  

(s,(t - p l l -  2L2) - Q 2 ( t  - 1131-  L2) )  

( * 3 ( t  - - 2&) - e3(t - 1121 - L 3 ) )  

( @ 2 ( t  - 1131- L2) - @ 2 ( t  - P J ) )  

( @ 3 ( t  - p21 - L3) - * 3 ( t  - 1111))  ( 2 4 )  

the wave properties  and  detector  geometry  as in  Section 

produce  eight  pulses  in X, at  times  depending  on  the 

3.4. Combinations  With  Data Taken  at Two Spacecraft 

Laser-noise-free combinations  are  not  exhausted by those we discussed  above. The 

interesting ones, of course, are not just  superpositions of the  three bases CY,  p ,  and y,  

but should also have  simple  correlation  structure - a low number of pulses in  response 

to  gravitational waves. The sensitivities  and  directional responses of all of these  must 

eventually  be  investigated. To give an  example consider: 

together  with Q and R from cyclic permutation. P has an 8-pulse  response to incident 
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In terms of the bases we have: 

The P, Q, R combinations could be useful in that each only involves data received at two of 

the spacecraft. The  gravitational wave response for P is: 

3.5. Long-Wavelength Limits 

Although LISA will not operate exclusively in the long-wavelength limit, LWL 

2nalytical  results  are useful. In the LWL, the  gravitational wave can  be  expanded in terms 
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o f  spatial derivatives, e.g. 

h(t  - 11.21 - &) h(t)  - ( / l z l +  L,)hr(t)  + ( 1 / 2 ) ( / ~ 2 1 +  L,)zh’r( t )  + ... 

The 9:: are of order h’, while a,  p ,  y,  C ,  X, Y, 2, P, Q, and R are of order h”. The long 

wavelength  expansions are 

X g w  --$ ( 1/2)L1(L2 - L3) hl e h‘l hl 

-(1/2)L2(L1 + 3453) 62 * h” * i i 2  

+(1/2)L,(L1 + 3L2) h3 hrr i i3  
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w i t h  ,'j a,nd y derived from a,  Y and 2 derived from X, and Q and R derived from P by 

cyclic perrnutat,ion of the indices. Note that i n  the case of an  equilateral  triangle, the L W L  

response of' ( is nonzero beginning with h"'. 

4. GRAVITATIONAL  WAVE SENSITIVITIES 

In this section we compute  the  sensitivity  to GWs, i.e. the  strength of a GW required 

to achieve a given signal-to-noise ratio as a  function of Fourier  frequency  across the LISA 

band, for each of the  data combinations which cancel  laser noise. 

4.1. RMS Gravitational Wave Response 

To calculate average  sensitivity of the various laser-noise-canceling  combinations of 

the yij, we assume  an elliptically-polarized  monochromatic gravitational wave incident  on 

the three-spacecraft  system: h+ = H sinr sin(wt + 4) and h ,  = H cosr sinwt,  where H 

characterizes the  strength of the  gravitational wave and (I?, 4) define its  polarization  state. 

r and qh are  related  to  coordinates  on  the Poincark sphere for spin-2 waves. Let ( 6 ,  6) be 

orthogonal  unit  vectors  in  the  plane of the  three  spacecraft,  with 6 forming a right  hand 

system. To calculate the scalar responses @ i ,  we express the  orientations of the 6i by their 

angles a; with  the ii axis. The  orientation of the wavevector & (which is the  opposite of the 

direction to the source) is specified by spherical  angles (R, D); ; R is the angle  in  the  plane 

of LISA between the  projection of into that plane  and 61, while D is the  angle  between 

the projection  and k .  Then  equation (3) becomes 

$; ( t )  = " I  [Pi cos(wt) + &; sin(wt)] 
2( 1 - (i * 7 i ; ) Z )  

(32) 



where P; = sinr  sin4  (sin2D  cos2(a; - R )  - sin2(a; - R ) )  and Q; = (si& cos+) (sin2D 

cos2(u;  - R )  - sin2((n; - R ) )  - 2 cosr  sin(a; - R)  cos(a; - R )  sinD. We substitute  this 

expression for Q' into  equations (1)  and (2) to get expressions for Y:~:*. Since the  excitation 

is assumed  sinusoidal,  the  (linear) responses $" are also sinusoidal. The y;,w are then used 

to produce  expressions for GW  response of the laser-noise-canceling combinations. For 

example, we substitute  into  equation (15) to get a g " ,  into  equation (18) to get Cg", and 

into  equation (24) to get Xg". 

To produce  the rrns gravitational wave response of each a: C, X, ... combination, 

we use a procedure  similar to one used for spacecraft Doppler tracking GW sensitivity 

calculations  (Armstrong,  Estabrook, & Wahlquist  1987). We average over source  directions 

(assumed  uniformly  distributed on the celestial sphere)  and  polarization states  (assumed 

uniformly distributed  on  the PoincarC sphere for each  source direction).  The  averaging is 

done  via  Monte  Carlo  computer  simulation with 2500 (source  position,  polarization state) 

pairs  per  Fourier  frequency  bin  and 7000 Fourier  bins across the LISA band  lo-^ Hz 

to ~ 1 0 - l  Hz). The nominal LISA configuration is an  almost  equilateral  triangle; we took 

L1 = L2 = L3 = lo& light seconds in all  calculations  (except for the  unequal  arm ( case: 

discussed  below). 

Figure 2 shows the rrns spectral response of equal-arm as", equal-arm [ g w ,  unequal-arm 

Cg", and  equal-arm X g w  and P g w  as a function of Fourier  frequency. The GW response 

is suppressed  in  the LWL, since for sinusoidal waves h"(t) brings in a factor of f 2 .  The 

equal-arm  rms asw,  equal-arm rrns Xg" and P " ,  and  unequal-arm rrns (9" (see  Section 

3.5) show this LWL dependence. The  equal-arm rrns (g" varies as f 3  (equation 29). The 

rrns  responses peak roughly when the GW period becomes comparable to  the light  times 

between  spacecraft  pairs,  with  oscillations  in the response as the  phasors  associated  with 

each of the GW pulses add  constructively  and  destructively. The response at higher 



frequencies rema.ins comparable  to  the peak  response  and varies with  Fourier freque:"(:y as 

t h e  G W  phasors i n  (ts'", cg", and X"" add in an  out of phase. 

4.2. Noise Spectra 

To compute  the  spectra of the  important  remaining noises for each data  combination, 

we begin with the raw  Doppler power spectra of shot  and  accelerations  noises  and  multiply 

each of them by the  square of the Fourier transform of the  temporal  transfer  function 

relevant to  the various laser-noise-canceling  combinations.  Acceleration and  shot noise are 

assumed  independent, so their  spectra  add  to give the composite noise spectrum.  Explicitly, 

specification for acceleration noise performance  in  Bender e t  al. 1998 is characterized by 

the  spectrum x [l + ( f / 3  x 10-3Hz)2]2  [f/10-4Hz]-2'3  (m/s2)'/Hz. We assume  this 

spectrum for acceleration noise at each spacecraft along a given beam  and convert to a 

raw spectrum of fractional frequency  fluctuations, S;cce', by dividing it by 4 ~ ~ f ~ ~ ~ ,  where 

c is the  speed of light, yielding S;CCel = 2.8 x 10-41[1 + ( f / 3  x 10-3H2)2]2 [f/10-4Uz]-8'3 

Hz-'. (Note  that we use physical units in this conversion; we used  c = 1 elsewhere.) 

The shot noise spectrum used was derived  from the  length noise spectrum  in the LISA 

Pre-Phase A report (11 x 1 0 " 2 r n / a )   t o  be, for fractional  frequency  fluctuations, Sihot 

= 5.3 x 10-38 ( f / l ~ z ) 2  ~ z - 1 .  

For example,  the noise spectrum for Q! was computed using the above  raw  spectra 

for shot  and  acceleration noise, taking  into  account  the response functions  (equations 7, 8 

and 9, 10).  The aggregate noise spectra for each  linear  combination  thus  obtained for the 

L1 = Lz = Ls = L case  are: 



S , ( f )  = 12 s in2 (n fL )  S;cce’ + 6 SJhot Y ( 3 4 )  

S,y(f) = [4 s i n ’ ( 4 ~ f L )  + 32 sZn2(2RfL)] Sicce* + 16 s i n 2 ( 2 r f L )  Syshot. ( 3 5 )  

Figure 3 is a plot of these noise spectra for cy, C, X, and P. At  high  frequencies,  shot 

noise dominates. For Q and  the  spectra of the  shot noises simply  add. For X, four  shot 

noises enter,  each twice and each with  relative delays of zero and 2L; thus  the  shot noise 

spectrum is modulated by  16 sin2(2nfL) .  For P, four  shot noises also  enter,  each  twice 

and each with  relative delays of L and 2L; thus  the shot noise spectrum is modulated by 

8 s i n ’ ( 2 ~ f l )  + 8 s i n 2 ( n f l ) .  At  low frequencies,  acceleration noise dominates.  The  factors 

multiplying SicCe’ in  equations (33)-(36) follow from the definitions of cy, I ,  X, and P and 

the acceleration noise transfer  functions  (equations 9, lo),  under the  assumptions  that  the 

(vector)  acceleration noise is isotropic  in the plane of LISA. 

4.3. GW  Sensitivity as a Function of Fourier Frequency 

We take GW sensitivity to be  the wave amplitude required to achieve a given 

signal-to-noise ratio.  The  sensitivity  as a function of Fourier frequency was computed  as 

5 JS;Tf)Bl(rrns gravitational wave response for data  combination i), where i is cy, C,  X, P, 

etc.  The  bandwidth, B, was taken  to  be 3.17 x Hz (i.e.,  one  cycle/year).  The  factor 



of rj was included  because LISA sensitivities  are  conventionally given for SNR = ij i n  a one 

year integration. 

In Figure 4 we plot the GW sensitivity for X, assuming Ll = L2 = L3 = lo& light 

seconds. This  can  be  compared  with  the  sensitivity curves  calculated  modeling LISA as a 

rigid,  equal-arm  one-bounce conventional  interferometer. Schilling 1997 and  Bender e t  al. 

1998 envision transponders  at  spacecraft 2 and 3 and precisely equal  arms  (all of length 

L)  for laser noise elimination. That is, they consider a transponding  interferometer  data 

combination, S: 

S has a GW signal y iy  + yi:L - yi;" - yiyL composed of four  pulses  with times plZ, p2Z+ L ,  

p3Z + L ,  and plZ+ 2L. Similarly, S has  four  shot noises and four  acceleration  noises.  Our 

eight-pulse  combination X, for the case of transponders  and  equal  arms  is,  from  equation 

(23)) just S - S J L .  That is, for this case X is just S minus a copy of S delayed by 2L. Since 

every  Fourier  component of signal  and noise in S is just  multiplied by the  common  factor of 

[l - exp(27rif(2L))] to produce the corresponding  Fourier  component of X, the  sensitivity 

(ratio of noise to signal) for X is exactly the  same as that of S (Tinto & Armstrong 1999). 

Our  computed  sensitivity for X in  Figure 4 is in very good agreement, below about lov2  Hz, 

with  an  independent  computation for S by Schilling 1997; in the higher  frequency  region 

our  calculated  sensitivity  (which  includes only shot noise, not beam  pointing noise, etc.) is 

about a factor of 2 better. 

Figure 5 shows the  sensitivity calculation  for cy ( p  and y sensitivities are  identical) 

using the LISA geometry  with  equal  arm  lengths of loa light seconds. As with X, this 



is the  sensitivity averaged over source  directions  and  polarization  states.  Figure 6 shows 

the  sensitivity of (: both in the equilateral  triangle  configuration (cf. Figures 2 and 3 )  and 

for a configuration where the  arm lengths are L2 = L3 = 10 fi light seconds and Li = 20 

light  seconds.  Figure 7 shows the  sensitivity plot for the  combination P. Using the noise 

spectra  and  arm  lengths above, X has the best  average  sensitivity ( M  5 X compared 

with M 7 x for equal-arm CY,  = 8 x for equal-arm P, and M 1.3 X for 

equal-  and  unequal-arm ( in Figure 6). In  all  cases, the 3dB bandwidths  are  comparable  to 

the  center frequencies. X and P achieve  best  sensitivity at lower center  frequencies. CY has 

comparable best  performance,  but  shifted to a higher frequency. 5 has  slightly worse best 

performance; the larger  3dB  bandwidth of ( compensates  somewhat  but  an  observer would 

be largely  indifferent to performance of X, P, and ( near  the frequencies  where  achieves 

best  sensitivity. 

These  sensitivities  and  bandwidths were computed based on instrumental  shot  and 

acceleration noises only. Inclusion of expected confusion noise due  to  galactic  binaries 

(Bender e t  al. 1998, Figure 1.3) would  affect the low frequency band edges  only, and would 

have  little or no effect on the  3dB  bandwidths  and  best  sensitivities. 

5. SUMMARY 

We have given a general treatment of GW signals and  the  principal noise  sources for 

an  unequal  arm  space-borne  interferometer.  Our analysis was  for an  arbitrary  gravitational 

wave. 

By analyzing the  instrument  in  terms of one-way Doppler  shifts  between  pairs of 

spacecraft, we have  derived data combinations which cancel all the laser  noises while 

preserving the G W  signals. Three of these  combinations  are  equivalent  to  already-known 
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~lneyual-arm  interferometers.  The principal  result of this  paper is that  there  are  other, 

previously unknown, laser-noise-canceling  combinations  (e.g., CY, 4,  y,  i, P, Q, R) which 

may present  advantages  (e.g. in hardware  design, in robustness to failures of single  links, or 

redundancy in data analysis) for a  spaceborne  detector. 

We presented the general GW response and  the long-wavelength limits of each data 

combination. The  rms signal response (averaged over source position  and over wave 

polarization state) was computed for each data combination. All have the general  behavior 

that GW response  increases  with  increasing  frequency  (long-wavelength limit)  until  the 

period of the GW becomes  comparable with the  light-time across the  apparatus.  In  this 

regime the  multi-pulse  signature of the GW becomes  evident and  the GW response  as a 

function of Fourier  frequency  flattens and displays  oscillations as each GW phasor  adds 

constructively or destructively.  These  signal  response  functions were compared with noise 

spectra  to  evaluate GW sensitivity of each  configuration. We used spectra of shot  and 

acceleration noises appropriate  for  the proposed LISA detector,  taking  (as for the  GW 

signal)  explicit  account of the noise transfer  functions for each data  combination. 
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FIG. 1. The geometry of the 3 LISA spacecraft. Each spacecraft is equidistant from 

point 0, with  unit vectors 1;; indicating  directions to the  three  spacecraft. I.'nit vectors ri; 

point  between  spacecraft  pairs  with  the  indicated  orientation. 

FIG. 2. Root-mean-square  response to  gravitational waves of laser-noise-canceling 

combinations CY, C, X, and P. Response  has been averaged over source  directions  and 

polarization  states  as  indicated in the  text. Arm  lengths: L1 = L2 = L3 = lo& light 

seconds for CY, I ,  X, and P (Figure 2 a,b,c,d);  unequal  arm C has arms L2 = L3 = 10 &! 
light  seconds and L1 = 20 light  seconds (Figure  2e). 

FIG. 3. Noise spectra  for CY, c ,  X, and P using the raw spectra of shot  and  acceleration 

noise expected for LISA combined with  the noise response  functions of Section 2. Arm 

lengths are the  same  as  those in Figure 2. 

FIG. 4. Sensitivity plot for the combination X. Arm  lengths: L1 = L2 = L3 = lo& 

light  seconds. For this  configuration,  the  sensitivity for X should be  the  same  as  that of 

a conventional  equal-arm  one-bounce Michelson interferometric  combination, S, having 

the  same  geometry (see  Section 4). Our  calculated  sensitivity for X, here,  is  in  very  good 

agreement  with  an  independent  calculation for S by Schilling 1997 for the  same  detector 

geometry  (see  text). 

FIG. 5. As Figure 4, but for the linear  combination CY. 

FIG. 6. As Figure 4, but for I ,  both in the  equilateral  triangle  configuration  (Figure 

sa) and for an isosceles configuration  where the  arm  lengths  are L2 = L3 = 10 fi light 

seconds and L1 = 20 light seconds (Figure  6b). 

FIG. 7. As Figure 4, but for P in  the  equilateral  triangle  configuration. 
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